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both room temperature and 77
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. Introduction

ITER international organization has signed the magnet supports
MS) procurement arrangement with China. R&D of the manufac-
uring technique is the agent work for the final components. The

S system consist of toroidal field coils support (TFS), poloidal field
oils support (PFS), correction coils support (CCS) should endure
he gravity of the whole coils, the thermal stress during the coil
ooling down from room temperature to 4.2 K and the alternating
lectromagnetic forces [1].

To insure the proper functioning of the superconductor coils, the
xtre-cooling system is designed for all the MS to keep the tempera-
ure balance, as shown in Fig. 1. Attaching the thermal anchor to the
upport is the hardest task for manufacturing of the MS, because the
onnection of the pipe to the supports by any conventional method,
uch as TIG and MIG, is difficult due to the thin-wall can be easily
roken. Furthermore, the high temperature of welding may lead to
welding deformation of flexible plates.

Deformation should be controlled strictly for the assembly,
specially for the TF supports, which need extreme small manufac-
ure tolerance for assembling all the parts together. It is well known
hat the brazing temperature is relatively low, and no need to melt-
ng the matrix material, so that, the broken of thermal anchor can
e avoided as much as possible, deformation also can be controlled
ith decreasing of brazing temperature. In addition, metallic braz-

ng filler with good heat conduction is help for heat exchange of
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key components to sustain the ITER superconductor magnet coils, which

erature. Cooling of the supports is needed for maintaining temperature
razing connection to attach the thermal anchor to the support which made
udy, several kinds of brazing filler were developed as candidates, including
and Cu-based brazing filler. The test result shows that Ag-based brazing

with 316LN, but Cu-based alloy shows the best mechanical properties at
K. Even though the Sn–Pb alloy shows the lowest strength, it can be easily

emperature. Detail of the brazing filler selection is suggested and discussed

© 2010 Elsevier B.V. All rights reserved.

the support plate with coolant in pipe. Therefore, brazing is rec-
ommended for the connection of thermal anchor. On the other
hand, for all the supports, they will suffer cycle electromagnetic
forces during operation and disruption [2]. The enough attachment
strength between support plate and thermal anchor to resist the
external force is essential. In this report, several kinds of brazing
filler were developed as candidates, including Sn–Pb brazing filler,
Ag-based and Cu-based brazing filler.

2. The materials

The elements selection should be respect the ITER material table
[3], because some of the elements are not recommended for using as
the neutron irradiation during D-T fusion in ITER. In this investiga-
tion, three kinds of filler applied at low (200–300◦C), intermediate
(600–800◦C) and high (900–1100◦C) brazing temperature corre-
sponding to Sn–Pb alloy, Ag alloy and Cu alloy, respectively, were
developed.

Two different chemical compositions for each filler system were
designed. For Sn–Pb alloy system, the control of the contents of Sn
for improving the toughness of the filler was designed, because Sn
is brittle at low temperature. In addition, 2 wt% of Ag was added
to improve the combination property of filler. For Ag-based filler,
0.2 wt% and 2 wt% Ni were added in the filler, respectively, to
improve the wettability as well as the corrosion resistance. One
of the Ag-based filler added 5 wt% Sn to reduce the melting point.
Whereas for the Cu-based filler, a little amount of Si, Mn, Fe were
added to reduce the melting point and improve the strength of filler.
Detail of the composition can be seen in Table 1.
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