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Observation of turbulence suppression after electron-cyclotron-resonance-heating switch-off
on the HL-2A tokamak
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The formation of a transient internal transport barrier (ITB) is observed after the electron-cyclotron-resonance-
heating (ECRH) switch-off in the HL-2A plasmas, characterized by transient increase of central electron
temperature. The newly developed correlation reflectometer provided direct measurements showing reduction of
turbulence in the region of steepened gradients for the period of ITB formation triggered by the ECRH switch-off.
Furthermore, the reduction of core turbulence is correlated in time with the appearance of a low-frequency mode
with a spectrally broad poloidal structure that peaks near zero frequency in the core region. These structures
have low poloidal mode number, high poloidal correlation, and short radial correlation and are strongly coupled
with high-frequency ambient turbulence. Observation indicates that these structures play important roles in the
reduction of the core turbulence and in improvements of the core transport after the off-axis ECRH is turned off.
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I. INTRODUCTION

Discharges with internal transport barriers (ITBs) have been
widely investigated in recent times to compile an international
database that will help researchers understand the conditions
which lead to and the parameters which allow control of ITBs.
Many experiments have been performed on various devices
to clarify the formation of the transport barrier with reduced
transport triggered by localized heating and fueling, such as
pellet injection, supersonic molecular beam injection (SMBI),
high-Z impurity injection, and electron cyclotron resonance
heating (ECRH) [1–7]. There are two types of explanations
relating to these phenomena [5–7]. One is relevant to the
current profile, the magnetic shear or plasma rotation. The
other one is relevant to the so-called nonlocal effects, for which
theories have not been well developed so far. In the off-axis
ECRH experiments, observations in T-10 and TEXTOR suggest
that the necessary condition to reduce the core transport after
ECRH switch-off is relevant to the appearance of the low value
of dq/dρ near rational surfaces [4,5]. A large increase on the
central electron temperature is induced by off-axis ECRH in
DIII-D, which was modeled in terms of a significant heat pinch
and suppression of heat diffusivity [3]. However, previous
off-axis ECRH experiments were mostly carried out around
r/a ∼0.4 [4–6], and the core turbulence study is not sufficient.
The links among the improved confinement, the ECRH power
deposition, and the core turbulence are still unclear.

In this paper, we concentrate on the results with far off-
axis ECRH switch-off on the HL-2A tokamak to explore the
physics of the underlying processes in the formation of ITB.

II. EFFECT OF ECRH SWITCH-OFF ON ELECTRON
TRANSPORT

The ECRH system on the HL-2A consists of six gyrotrons
[8] with total output power up to 2.5 MW. At present, we
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cannot steer the ECRH poloidally because of technical reasons,
so experiments with various ECRH deposition positions were
carried out by changing the toroidal field. The parameter ranges
were as follows: density, (1–1.5) × 1019 m−3; plasma current,
160–180 kA; and ECRH frequency, 68 GHz, with power up
to 1 MW in this study. The toroidal field is scanned from
1.22 T for on-axis heating to 1.45 T for off-axis heating shot
by shot to adjust the ECRH deposition position. One aspect
of this investigation that deserves attention is the effect of
the variation in the magnetic field. We discuss the response
of plasma to ECRH switch-off by contrasting discharges that
have dissimilar values of the plasma β due to the scan of
the toroidal field (but somewhat similar values of the ECRH
power). Figure 1 shows time evolutions of the core and the
edge temperatures after ECRH switch-off in three typical
shots with different ECRH deposition positions. In the case
of on-axis ECRH, the core and the edge temperatures have
simultaneous responses to the ECRH switch-off; that is, they
start to drop almost at the same time. As the ECRH deposition
position moves outward to r/a ∼0.2–0.4, a delayed drop
of the central temperature is observed. When the ECRH
deposition position moves further outward to r/a ∼0.6–0.7
(far-off-axis ECRH, near the q = 2 surface), an increased
central temperature after ECRH switch-off is observed while
the edge temperature always simultaneously drops. The central
temperature increases for several tens of milliseconds before
it starts to drop.

Figure 2 shows that a steep electron temperature-gradient
zone appears around r = 10 cm (near q = 1 surface) in a typical
far-off-axis ECRH discharge (13593), in which the 740-kW
ECRH is deposited at r = 27.8 cm (rdep/a ∼0.69). The electron
temperature gradient arises because the central (within r <

9 cm) electron temperature increases for about 20 ms and then
decays to equilibrium state after the off-axis ECRH switch-off,
while the temperature at r = 17 cm falls as indicated by the time
evolution of the electron temperatures on the right of the figure.
This corresponds to the formation of an ITB as a well-localized
narrow layer with low heat diffusivity (3.5 m2/s compared
with 5 m2s−1 in the Ohmic case) in the plasma. The current
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