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Optics of ion beams for the neutral beam injection system
on HL-2A Tokamak
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The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two-
dimensional numerical simulation program firstly, where the emitting surface is taken at 100 De-
bye lengths from the plasma electrode. The mathematical formulation, computation techniques are
described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed
geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on
ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In or-
der to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between
the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temper-
ature is desired. The results allow optimization of the ion beam optics in the neutral beam injection
system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system
on HL-2M Tokomak. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737184]

I. INTRODUCTION

Neutral beam injection systems for heating and sustain-
ing plasma on HL-2A Tokamak require the production of hy-
drogen and deuterium ion beams of high current density and
minimum beam divergence. These neutral beams are formed
from four magnetic multi-poles line-cusp ion source in one
beam line on HL-2A Tokamak, Recent experimental evidence
indicates the hydrogen ion beam power of one ion source is
about 40 kV × 20 A. Some ion beam characteristics are re-
searched by experimental method.1 In order to improve the
beam optics, the computation of ion beam optics is studied by
numerical simulation.

Machine computations are available using algorithms
that iterate between a solution of Poisson’s equation and a
calculation of ion trajectories with deposition of space charge.
The earlier efforts started the ions on an equipotential surface
in the sheath region of the source plasma, which typically
are approximately 10 to 15 Debye lengths from the plasma
electrode.2 The approximate position, potential, and field of
this surface, as well as the initial directed ion speed, are given
by a solution to the collisionless one-dimensional Poisson-
Vlasov equation in the sheath region.3 A procedure has been
worked out that, given the emitting surface potential, adjusts
the emitter position automatically so that the electric field is
consistent with one-dimensional solution.4 However, this pre-
sumes that the electric field is the same and is constant along
such a potential surface in the actual two-dimensional prob-
lem. Another problem is that the ion direction at the sheath
must be specified even though it is unknown for the two di-
mensional case. In order to avoid these problems, the emitting
surface in this paper is taken far back into the plasma, which
is 100 Debye lengths from the plasma electrode, and the itera-
tion schemes converge is improved after utilizing an advanced
schemes.5 The computer program applied to study ion beam
optics is developed independently by Southwestern Institute
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of Physics in China recently. It is revision of program where
emitting surface is taken at classical sheath position4

In Sec. II, the computation techniques and mathematical
formulation are described. In Sec. III, the typical simulation
results are shown and the effect of plasma properties upon
ion beam optics is examined by comparing with experimental
results. In Sec. IV, conclusions are presented.

II. MATHEMATICAL FORMULATION AND
COMPUTATION TECHNIQUES

Poisson equation, ion movement equation, and ion cur-
rent continuity equation are solved simultaneously4

∇2φ = −1

ε
(ni + ne), (1)

d(MiVi)

dt
= qi(Vi × B − ∇φ), (2)

∇ · (niVi) = 0, (3)

where φ, ni, ne, q, M, V, B are electric potential, ion and elec-
tron charge density, ion electric charge, ion mass, ion veloc-
ity, and magnetic field, respectively. In this system magnetic
field is absent, so B is zero. The electron density is assumed
to be in Boltzmann distribution. These equations have been
solved previously.4 In recent attempts, the ions emitting sur-
face is taken into the plasma where 100 Debye lengths far
away from plasma electrode. Therefore, ion initial nonreg-
ular thermal velocity distribution is taken into account. We
assume that ions velocities distribution obeys the Maxwell
distribution.5 And these initial average velocities in two di-
mension plane could be referred to analytical solution.6

Poisson’s Equation (1) with Dirichlet and Neumann
boundary conditions is solved by finite element methods,
using the method of successive over-relaxation. Assum-
ing the potential is in linear distribution in each triangular
mesh element, the movement equation is solved by direct
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