Evolutions of limit cycle oscillation in L-I-H transitions on HL-2A

J. Chenga,*,1, J.Q. Donga,b, L.W. Yana, Y. Xua, Z.H. Huanga, K.J. Zhaoa,c, X.Q. Jia, W.L. Zhonga, D.L. Yua, L. Nied, X.M. Songa, Q.W. Yanga, X.T. Dinga

aSouthwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041, China
bInstitute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, China
cWCI Center for Fusion Theory, National Fusion Research Institute, Daedeon 305-333, Republic of Korea
dDepartment of Modern Physics, USTC, Hefei 230026, China

\section*{ARTICLE INFO}

\textit{Article history:}
Available online 23 December 2014

\section*{ABSTRACT}

Poloidal symmetric low frequency oscillations at the plasma edge were observed during the low-intermediate-high transitions on the HL-2A tokamak. The limit cycle oscillation (LCO) frequency gradually reduces from 3.0 kHz to 1.5 kHz approaching the H mode. Meanwhile a transition of phase shift between the turbulence and the radial electric field was identified. In the initial phase, the turbulence grows first, followed by the localized electric field. In the later phase, the electric field leads turbulence, and the magnitude of the Reynolds stress gradient is out of phase with the LCO flow. The increasing magnitudes of the magnetic fluctuation may be correlated with the I-H transition. In addition, the divertor heat flux is also significantly modulated by the LCOs.